Biclustering of gene expression data

نویسنده

  • KRISTA RIZMAN ŽALIK
چکیده

Biclustering is an important problem that arises in diverse applications, including the analysis of gene expression and drug interaction data. A large number of clustering approaches have been proposed for gene expression data obtained from microarray experiments. However, the results from the application of standard clustering methods to genes are limited. This limitation is imposed by the existence of a number of experimental conditions or gene samples, where the expression levels of the same genes are uncorrelated. A similar limitation exists when conditionclustering is performed. The goal of biclustering is to find submatrices of genes and conditions, or samples where the genes have nearly the same expression levels for nearly all conditions. Some clustering methods have been adopted or proposed. However, some concerns still remain, such as the robustness of mining methods on the noise and input parameters. In this paper we tackle the problem of effectively clustering gene expression data by proposing an algorithm. We use a density-based approach to identify clusters. Our experimental results show that the algorithm is effective. Key-Words: -data mining, clustering, biclustering

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

به کارگیری خوشه‌بندی دوبعدی با روش «زیرماتریس‌های با میانگین- درایه‌های بزرگ» در داده‌های بیان ژنی حاصل از ریزآرایه‌های DNA

Background and Objective: In recent years, DNA microarray technology has become a central tool in genomic research. Using this technology, which made it possible to simultaneously analyze expression levels for thousands of genes under different conditions, massive amounts of information will be obtained. While traditional clustering methods, such as hierarchical and K-means clustering have been...

متن کامل

An Improved Biclustering Algorithm for Gene Expression Data

Cheng-Church (CC) biclustering algorithm is the popular algorithm for the gene expression data mining at present. Only find one biclustering can be found at one time and the biclustering that overlap each other can hardly be found when using this algorithm. This article puts forward a modified algorithm for the gene expression data mining that uses the middle biclustering result to conduct the ...

متن کامل

Gene co-expression networks via biclustering Differential gene co-expression networks via Bayesian biclustering models

Identifying latent structure in large data matrices is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are locally co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-re...

متن کامل

e-CCC-Biclustering: Related work on biclustering algorithms for time series gene expression data

This document provides supplementary material describing related work on biclustering algorithms for time series gene expression data analysis. We describe in detail three state of the art biclustering approaches specifically design to discover biclusters in gene expression time series and identify their strengths and weaknesses.

متن کامل

Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering

Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-...

متن کامل

Differential gene co-expression networks via Bayesian biclustering models

Identifying latent structure in large data matrices is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are locally co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005